A Lanosteryl Triterpene from Protorhus longifolia Improves Glucose Tolerance and Pancreatic Beta Cell Ultrastructure in Type 2 Diabetic Rats.
نویسندگان
چکیده
Type 2 diabetes remains one of the leading causes of death worldwide. Persistent hyperglycemia within a diabetic state is implicated in the generation of oxidative stress and aggravated inflammation that is responsible for accelerated modification of pancreatic beta cell structure. Here we investigated whether a lanosteryl triterpene, methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA-3), isolated from Protorhus longifolia can improve glucose tolerance and pancreatic beta cell ultrastructure by reducing oxidative stress and inflammation in high fat diet and streptozotocin-induced type 2 diabetes in rats. In addition to impaired glucose tolerance, the untreated diabetic rats showed increased fasting plasma glucose and C-peptide levels. These untreated diabetic rats further demonstrated raised cholesterol, interleukin-6 (IL-6), and lipid peroxidation levels as well as a destroyed beta cell ultrastructure. Treatment with RA-3 was as effective as metformin in improving glucose tolerance and antioxidant effect in the diabetic rats. Interestingly, RA-3 displayed a slightly more enhanced effect than metformin in reducing elevated IL-6 levels and in improving beta cell ultrastructure. Although the involved molecular mechanisms remain to be established, RA-3 demonstrates a strong potential to improve pancreatic beta cell ultrastructure by attenuating impaired glucose tolerance, reducing oxidative stress and inflammation.
منابع مشابه
In vivo antihyperglycemic activity of a lanosteryl triterpene from Protorhus longifolia.
Control of postprandial hyperglycemia is crucial in the management of diabetes mellitus. Despite the use of the current hypoglycemic drugs, incidence of diabetes and related diseases continue to increase. This study aimed at evaluating the in vivo antihyperglycemic activity of methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA-3), a lanosteryl triterpene isolated, and characterized from Protorhus l...
متن کاملBeta Cell Protective Effects of Sodium Tungstate in Streptozotocin-Induced Diabetic Rats: Glycemic Control, Blockage of Oxidative Stress and Beta Cell Histochemistry
Background: Diabetes is a major public health problem. The development of new therapies that are able to improve glycemia management and even to cure diabetes is of great interest. In this study, protective effects of sodium tungstate against STZ-induced beta-cell damages were investigated. Methods: Sixty rats were divided into six groups: control, diabetic, sodium tungstate treated diabetic r...
متن کاملUrtica Dioica Distillate Regenerates Pancreatic Beta Cells in Streptozotocin-Induced Diabetic Rats
Background: Urtica dioica is known as an anti-hyperglycemic plant. Urtica dioica distillate (UD) is a traditional Iranian drink, locally known as “aragh gazaneh”. In spite of its widespread consumption in Iran, according to traditional Iranian medicine, there is no scientific report on the usefulness of UD for diabetic patients. This survey was designed to evaluate its protective effects for th...
متن کاملCholecystokinin octapeptide: a potential growth factor for pancreatic beta cells in diabetic rats.
CONTEXT Diabetes is associated with the reduction of beta cell mass and activity. Cholecystokinin (CCK) is known to induce growth of the exocrine pancreas and to stimulate insulin secretion. OBJECTIVE We investigated the possible role of CCK-octapeptide (CCK-8) in generating islet cell proliferation in type 1 and type 2 diabetic rats. METHODS Streptozotocin-induced type 1 diabetic rats, str...
متن کاملEffect of Silymarin on Blood Glucose concentration and Pax4 Gene Expression and Histopathology of Pancreatic Tissue in Streptozotocin-Induced Diabetic Wistar Rats
Aim and Background: Considering the high rates of diabetes in Iran and the world and also due to the lower side effects of medicinal plants compared to industrial and chemical arbitrators, this study examined the effect of the active ingredient of tall moss (silymarin) on the expression of pax4 gene, one of the key genes for development and reconstruction of pancreatic beta cells. Material ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecules
دوره 22 8 شماره
صفحات -
تاریخ انتشار 2017